Since both wires are made of the same material and have the same mass, they also have the same volume. Let \(\rho\) be the resistivity, \(A\) the cross-sectional area, \(V\) the volume, and \(\ell\) the length.
The resistance \(R\) of a wire is given by:
\[ R = \frac{\rho \ell}{A} = \frac{\rho V}{A^2}. \]
Since \(V\) is constant for both wires, we can write:
\[ \frac{R_A}{R_B} = \frac{A_B^2}{A_A^2} = \frac{r_B^4}{r_A^4}. \]
Given \(R_B = 2 \, \Omega\), \(r_B = 4 \, \text{mm}\), and \(r_A = 2 \, \text{mm}\), we substitute these values:
\[ \frac{R_A}{2} = \left(\frac{4 \times 10^{-3}}{2 \times 10^{-3}}\right)^4. \]
Simplifying this, we get:
\[ \frac{R_A}{2} = 16, \]
which gives:
\[ R_A = 32 \, \Omega. \]
A wire of resistance $ R $ is bent into a triangular pyramid as shown in the figure, with each segment having the same length. The resistance between points $ A $ and $ B $ is $ \frac{R}{n} $. The value of $ n $ is:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: