For incoherent waves:
\[ I_1 = I_A + I_B = I_0 + 9I_0 = 10I_0 \]For coherent waves:
\[ I_2 = I_A + I_B + 2\sqrt{I_A I_B} \cos 60^\circ \] \[ I_2 = I_0 + 9I_0 + 2\sqrt{I_0 \times 9I_0} \cdot \frac{1}{2} = 13I_0 \]Given:
\[ \frac{I_1}{I_2} = \frac{10}{13} \]Thus:
\[ x = 13 \]Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: