Let $P$ be an external point from which tangents $PQ$ and $PR$ are drawn to the circle with center $O$, touching it at $Q$ and $R$ respectively.
Points $A$ and $B$ lie on $PQ$ and $PR$ such that $AB$ is also tangent to the circle and touches it at point $T$.
We are given $\angle AOB = 50^{\circ}$ and we need to find $\angle APB$.
Step 1: Use tangent–radius property.
From point $A$, two tangents are drawn: $AQ$ and $AT$.
Since tangents from an external point are equal, we have:
\[
AQ = AT, \quad \Rightarrow\quad \triangle AOQ \cong \triangle AOT.
\]
Hence,
\[
\angle AOQ = \angle AOT = x \quad\text{(say)}.
\]
Similarly, from point $B$, tangents $BR$ and $BT$ are drawn, so:
\[
\triangle BOR \cong \triangle BOT \Rightarrow
\angle BOR = \angle BOT = y \quad\text{(say)}.
\]
Step 2: Relate $x$ and $y$ using $\angle AOB$.
At the center,
\[
\angle AOB = \angle AOT + \angle TOB = x + y = 50^{\circ}.
\tag{1}
\]
Step 3: Find $\angle QOR$.
Angle between radii $OQ$ and $OR$ is:
\[
\angle QOR = \angle QOA + \angle AOT + \angle TOB + \angle BOR
= x + x + y + y
= 2(x + y).
\]
Using (1),
\[
\angle QOR = 2 \times 50^{\circ} = 100^{\circ}.
\]
Step 4: Use quadrilateral $PQOR$.
Since the radius is perpendicular to the tangent at the point of contact,
\[
\angle OQP = 90^{\circ}, \qquad \angle ORP = 90^{\circ}.
\]
In quadrilateral $PQOR$:
\[
\angle QPR + \angle OQP + \angle QOR + \angle ORP = 360^{\circ}.
\]
But $\angle QPR = \angle APB$ (same angle at $P$), hence
\[
\angle APB + 90^{\circ} + 100^{\circ} + 90^{\circ} = 360^{\circ}
\]
\[
\Rightarrow\; \angle APB + 280^{\circ} = 360^{\circ}
\Rightarrow\; \angle APB = 80^{\circ}.
\]
Therefore, $\angle APB = 80^{\circ}$.