Let the radii of the bigger and smaller circles be $r_1$ and $r_2$ respectively. Given:
- Sum of diameters: $d_1 + d_2 = 40$ cm, where $d = 2r$ implies $2r_1 + 2r_2 = 40 \implies r_1 + r_2 = 20$.
- Difference of radii: $r_1 - r_2 = 6$.
Solving the system:
\[
r_1 + r_2 = 20, \quad r_1 - r_2 = 6
\]
Adding both:
\[
2r_1 = 26 \implies r_1 = 13
\]
Subtracting:
\[
2r_2 = 14 \implies r_2 = 7
\]
The area of a circle is proportional to the square of its radius. Hence,
\[
\text{Ratio of areas} = \frac{\pi r_2^2}{\pi r_1^2} = \frac{7^2}{13^2} = \frac{49}{169}
\]