In the following figure chord MN and chord RS intersect at point D. If RD = 15, DS = 4, MD = 8, find DN by completing the following activity: 
Activity :
\(\therefore\) MD \(\times\) DN = \(\boxed{\phantom{SD}}\) \(\times\) DS \(\dots\) (Theorem of internal division of chords)
\(\therefore\) \(\boxed{\phantom{8}}\) \(\times\) DN = 15 \(\times\) 4
\(\therefore\) DN = \(\frac{\boxed{\phantom{60}}}{8}\)
\(\therefore\) DN = \(\boxed{\phantom{7.5}}\)
In the following figure, circle with centre D touches the sides of \(\angle\)ACB at A and B. If \(\angle\)ACB = 52\(^\circ\), find measure of \(\angle\)ADB. 
In the circuit shown, assuming the threshold voltage of the diode is negligibly small, then the voltage \( V_{AB} \) is correctly represented by:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: