Given:
\[d = 1 \, \text{mm} = 10^{-3} \, \text{m}, \quad D = 1 \, \text{m}, \quad \lambda = 500 \, \text{nm} = 5 \times 10^{-7} \, \text{m}.\]
For the central maximum of the single-slit pattern to contain 10 maxima of the double-slit pattern:
\[10 \times \frac{\lambda D}{d} = \frac{2\lambda D}{a},\]
where $a$ is the slit width.
Rearranging for $a$:
\[a = \frac{d}{5}.\]
Substitute $d = 10^{-3} \, \text{m}$:
\[a = \frac{10^{-3}}{5} = 2 \times 10^{-4} \, \text{m}.\]
Thus, the slit width is:
\[a = 2 \times 10^{-4} \, \text{m}.\]
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: