Given:
\[d = 1 \, \text{mm} = 10^{-3} \, \text{m}, \quad D = 1 \, \text{m}, \quad \lambda = 500 \, \text{nm} = 5 \times 10^{-7} \, \text{m}.\]
For the central maximum of the single-slit pattern to contain 10 maxima of the double-slit pattern:
\[10 \times \frac{\lambda D}{d} = \frac{2\lambda D}{a},\]
where $a$ is the slit width.
Rearranging for $a$:
\[a = \frac{d}{5}.\]
Substitute $d = 10^{-3} \, \text{m}$:
\[a = \frac{10^{-3}}{5} = 2 \times 10^{-4} \, \text{m}.\]
Thus, the slit width is:
\[a = 2 \times 10^{-4} \, \text{m}.\]
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: