Two slabs with square cross section of different materials $(1,2)$ with equal sides $(l)$ and thickness $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ such that $\mathrm{d}_{2}=2 \mathrm{~d}_{1}$ and $l>\mathrm{d}_{2}$. Considering lower edges of these slabs are fixed to the floor, we apply equal shearing force on the narrow faces. The angle of deformation is $\theta_{2}=2 \theta_{1}$. If the shear moduli of material 1 is $4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, then shear moduli of material 2 is $\mathrm{x} \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, where value of x is _______ .
If the given graph shows the load (W) attached to and the elongation ($\Delta l$) produced in a wire of length 1 meter and cross-sectional area 1 mm$^2$, then the Young's modulus of the material of the wire is