Step 1: Calculate the pressure change (\(\Delta P\)).
\[
\Delta P = P_{\text{final}} - P_{\text{initial}} = 5\,\text{atm} - 1\,\text{atm} = 4\,\text{atm} = 4 \times 10^5\,\text{Pa}
\]
Step 2: Use the bulk modulus formula.
The bulk modulus (\(K\)) is given by:
\[
K = -\frac{\Delta P}{\Delta V/V_0}
\]
where:
- \(K = 2\,\text{GPa} = 2 \times 10^9\,\text{Pa}\)
- \(\Delta V = -0.8\,\text{cm}^3 = -0.8 \times 10^{-6}\,\text{m}^3\) (negative sign indicates volume decrease)
- \(V_0\) is the initial volume in \(\text{m}^3\)
Step 3: Solve for initial volume (\(V_0\)).
\[
2 \times 10^9 = -\frac{4 \times 10^5}{-0.8 \times 10^{-6}/V_0}
\]
\[
2 \times 10^9 = \frac{4 \times 10^5 \times V_0}{0.8 \times 10^{-6}}
\]
\[
V_0 = \frac{2 \times 10^9 \times 0.8 \times 10^{-6}}{4 \times 10^5} = \frac{1.6 \times 10^3}{4 \times 10^5} = 4 \times 10^{-3}\,\text{m}^3 = 4\,\text{litres}
\]