For SHM superposition:
Simplify:
\[ 64 = \sqrt{128 + 128 \cos\phi}. \] Square both sides: \[ 64 = 128(1 + \cos\phi). \] Solve for \(\cos\phi\): \[ \cos\phi = -\frac{1}{2}. \]
Final Answer: \(120^\circ\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: