Given:
Horizontal component of Earth's magnetic field, \(B_H = 3 \times 10^{-5}\,T\)
Angle of dip, \( \delta = 45^\circ \)
Step-by-Step Explanation:
Step 1: Recall the relation between the resultant magnetic field (\( B \)), horizontal component (\( B_H \)), and angle of dip (\( \delta \)):
\[ B_H = B\cos\delta \]
Step 2: Solve for resultant magnetic field \( B \):
\[ B = \frac{B_H}{\cos\delta} \]
Step 3: Substitute given values:
\[ B = \frac{3 \times 10^{-5}}{\cos 45^\circ} \]
We know \(\cos 45^\circ = \frac{1}{\sqrt{2}}\). Thus:
\[ B = \frac{3 \times 10^{-5}}{\frac{1}{\sqrt{2}}} = 3\sqrt{2} \times 10^{-5}\,T \]
Final Conclusion:
The resultant magnetic field at the given place is \(3\sqrt{2}\times10^{-5}\,T\).
List- I (Layer of atmosphere) | List- II (Approximate height over earth's surface) | ||
A. | F1-Layer | I. | 10 km |
B. | D-Layer | II. | 170-190 km |
C. | Troposphere | III. | 100 km |
D. | E-layer | IV. | 65-75 km |