The orbital speed of a satellite is given by:
\[v = \sqrt{\frac{GM}{R}}.\]
For satellites \(A\) and \(B\):
\[\frac{v_A}{v_B} = \sqrt{\frac{R_B}{R_A}} = \sqrt{\frac{R}{4R}} = \frac{1}{2}.\]
Thus:
\[v_B = 2v_A.\]
Given \(v_A = 3v\), the speed of \(B\) is:
\[v_B = 2 \cdot 3v = 6v.\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: