The orbital speed of a satellite is given by:
\[v = \sqrt{\frac{GM}{R}}.\]
For satellites \(A\) and \(B\):
\[\frac{v_A}{v_B} = \sqrt{\frac{R_B}{R_A}} = \sqrt{\frac{R}{4R}} = \frac{1}{2}.\]
Thus:
\[v_B = 2v_A.\]
Given \(v_A = 3v\), the speed of \(B\) is:
\[v_B = 2 \cdot 3v = 6v.\]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: