
\(\frac{40}{3}V\)
To find the reading on the voltmeter connected across the 200 \((\Omega)\) resistor, we must first calculate the total resistance in the series circuit. The total resistance \(R_{\text{total}}\) is given by the sum of the individual resistances:
\(R_{\text{total}} = 100\,\Omega + 200\,\Omega = 300\,\Omega\)
Using Ohm's Law, the total current \(I\) flowing through the circuit is calculated as follows:
\(I = \frac{V_{\text{battery}}}{R_{\text{total}}} = \frac{20\,V}{300\,\Omega} = \frac{1}{15}\,A\)
Now, calculate the voltage drop across the 200 \((\Omega)\) resistor using Ohm's Law:
\(V_{200} = I \times 200\,\Omega = \frac{1}{15}\,A \times 200\,\Omega = \frac{200}{15}\,V = \frac{40}{3}\,V\)
The voltmeter reading is therefore \(\frac{40}{3}\,V\).
Thus, the correct answer is \(\frac{40}{3}\,V\).

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 