Two short dipoles \( (A, B) \), \( A \) having charges \( \pm 2\,\mu\text{C} \) and length \( 1\,\text{cm} \) and \( B \) having charges \( \pm 4\,\mu\text{C} \) and length \( 1\,\text{cm} \) are placed with their centres \( 80\,\text{cm} \) apart as shown in the figure. The electric field at a point \( P \), equidistant from the centres of both dipoles is \underline{\hspace{2cm}} N/C.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 