Step 1: Relation between stress and strain Young’s modulus is given by:
\[ Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{F}{A}}{\frac{\Delta \ell}{\ell}}. \]
Rearranging for \( \Delta \ell \):
\[ \Delta \ell = \frac{F \ell}{A Y}. \]
Step 2: Substitute given values
Substitute into the formula:
\[ \Delta \ell = \frac{200 \cdot 2}{2 \cdot 10^{-4} \cdot 10^{11}}. \]
Step 3: Simplify the expression
\[ \Delta \ell = \frac{400}{2 \times 10^7} = 2 \times 10^{-5} \, \text{m}. \]
Convert to micrometers (\( \mu \text{m} \)):
\[ \Delta \ell = 20 \, \mu \text{m}. \]
Final Answer: 20 \( \mu \text{m} \).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: