Step 1: Relation between stress and strain Young’s modulus is given by:
\[ Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{F}{A}}{\frac{\Delta \ell}{\ell}}. \]
Rearranging for \( \Delta \ell \):
\[ \Delta \ell = \frac{F \ell}{A Y}. \]
Step 2: Substitute given values
Substitute into the formula:
\[ \Delta \ell = \frac{200 \cdot 2}{2 \cdot 10^{-4} \cdot 10^{11}}. \]
Step 3: Simplify the expression
\[ \Delta \ell = \frac{400}{2 \times 10^7} = 2 \times 10^{-5} \, \text{m}. \]
Convert to micrometers (\( \mu \text{m} \)):
\[ \Delta \ell = 20 \, \mu \text{m}. \]
Final Answer: 20 \( \mu \text{m} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: