The velocity of the center of mass \( V_{\text{cm}} \) of two particles is given by:
\[
V_{\text{cm}} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}
\]
Where:
- \( m_1 = 1 \, \text{g} = 0.001 \, \text{kg} \),
- \( m_2 = 2 \, \text{g} = 0.002 \, \text{kg} \),
- \( v_1 = 10 \, \text{m/s} \),
- \( v_2 = 20 \, \text{m/s} \).
Substituting the values:
\[
V_{\text{cm}} = \frac{0.001 \times 10 + 0.002 \times 20}{0.001 + 0.002} = \frac{0.01 + 0.04}{0.003} = \frac{0.05}{0.003} = 5 \, \text{m/s}
\]
Thus, the velocity of the center of mass is \( \boxed{5 \, \text{m/s}} \).