Step 1: Identify given data
Mass of first particle, \(m_1 = 10 \text{ g} = 0.01 \text{ kg}\)
Velocity of first particle, \(\vec{v}_1 = 10 \text{ ms}^{-1}\) towards east
Mass of second particle, \(m_2 = 15 \text{ g} = 0.015 \text{ kg}\)
Velocity of second particle, \(\vec{v}_2 = 5 \text{ ms}^{-1}\) towards north
Step 2: Calculate total mass of the system
\[
M = m_1 + m_2 = 0.01 + 0.015 = 0.025 \text{ kg}
\]
Step 3: Calculate momentum components
Momentum of first particle:
\[
\vec{p}_1 = m_1 \vec{v}_1 = 0.01 \times 10 = 0.1 \text{ kg m/s (east)}
\]
Momentum of second particle:
\[
\vec{p}_2 = m_2 \vec{v}_2 = 0.015 \times 5 = 0.075 \text{ kg m/s (north)}
\]
Step 4: Calculate velocity of center of mass (CM)
Velocity components of CM:
\[
v_{x} = \frac{p_1}{M} = \frac{0.1}{0.025} = 4 \text{ ms}^{-1}
\]
\[
v_{y} = \frac{p_2}{M} = \frac{0.075}{0.025} = 3 \text{ ms}^{-1}
\]
Step 5: Calculate magnitude of CM velocity
\[
v_{CM} = \sqrt{v_x^2 + v_y^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \text{ ms}^{-1}
\]
Step 6: Conclusion
The magnitude of the velocity of the center of mass of the system is \(5 \text{ ms}^{-1}\).