\(2\, mv'\, sin \,\theta=\frac{mv}{\sqrt{2}}+\frac{mv\sqrt{3}}{2}\)
\(3 \,mv' \,cos\, \theta=\frac{mv}{2}-\frac{mv}{\sqrt{2}}\)
\(sin\, \theta=\frac{\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}}{\frac{1}{2}-\frac{1}{\sqrt{2}}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{1-\sqrt{2}}\)
\(\text{The Correct Option is (A):}\) \(\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1-\sqrt{2}}\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Read More: Work and Energy