\(2\, mv'\, sin \,\theta=\frac{mv}{\sqrt{2}}+\frac{mv\sqrt{3}}{2}\)
\(3 \,mv' \,cos\, \theta=\frac{mv}{2}-\frac{mv}{\sqrt{2}}\)
\(sin\, \theta=\frac{\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}}{\frac{1}{2}-\frac{1}{\sqrt{2}}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{1-\sqrt{2}}\)
\(\text{The Correct Option is (A):}\) \(\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1-\sqrt{2}}\)

Potential energy (V) versus distance (x) is given by the graph. Rank various regions as per the magnitudes of the force (F) acting on a particle from high to low. 
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Read More: Work and Energy