Question:

Two masses $m$ and $\frac{m}{2}$ are connected at the two ends of a massless rigid rod of length $l$. The rod is suspended by a thin wire of torsional constant $k$ at the centre of mass of the rod-mass system(see figure). Because of torsional constant $k$, the restoring torque is $\tau =k\theta$ for angular displacement $\theta$. If the rod is rota ted by $\theta_0$ and released, the tension in it when it passes through its mean position will be:

Updated On: Sep 14, 2024
  • $\frac{3k\theta^{2}_{0}}{l}$
  • $\frac{k\theta^{{2}}_{0}}{2l}$
  • $\frac{2k\theta^{{2}}_{0}}{l}$
  • $\frac{k\theta^{{2}}_{0}}{l}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$\omega = \sqrt{\frac{k}{I}}$
$ \omega = \sqrt{\frac{3k}{m\ell^{2}}}$
$ \Omega =\omega\theta_{0} = $ average velocity
$ T=m\Omega^{2}r_{1} $
$ T = m\Omega^{2} \frac{\ell}{3}$
$ = m\omega^{2} \theta^{2}_{0} \frac{\ell}{3}$
$ = \frac{k\theta^{2}_{0}}{\ell} $
$ I = \mu\ell^{2} = \frac{\frac{m^{2}}{2}}{\frac{3m}{2}} \ell^{2} $
$= \frac{m\ell^{2}}{3}$
$ \frac{r_{1}}{r_{2}} = \frac{1}{2} \Rightarrow r_{1} = \frac{\ell}{3} $
Was this answer helpful?
0
0

Concepts Used:

Moment of Inertia

Moment of inertia is defined as the quantity expressed by the body resisting angular acceleration which is the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.

Moment of inertia mainly depends on the following three factors:

  1. The density of the material
  2. Shape and size of the body
  3. Axis of rotation

Formula:

In general form, the moment of inertia can be expressed as, 

I = m × r²

Where, 

I = Moment of inertia. 

m = sum of the product of the mass. 

r = distance from the axis of the rotation. 

M¹ L² T° is the dimensional formula of the moment of inertia. 

The equation for moment of inertia is given by,

I = I = ∑mi ri²

Methods to calculate Moment of Inertia:

To calculate the moment of inertia, we use two important theorems-

  • Perpendicular axis theorem
  • Parallel axis theorem