According to Raoult’s law,
\[
P_{\text{solution}} = x_A P_A^\circ + x_B P_B^\circ
\]
Case I:
Number of moles: $n_A = 3$, $n_B = 1$
\[
x_A = \frac{3}{4}, \quad x_B = \frac{1}{4}
\]
Given vapour pressure:
\[
500 = \frac{3}{4}P_A^\circ + \frac{1}{4}P_B^\circ
\]
\[
2000 = 3P_A^\circ + P_B^\circ \qquad (1)
\]
Case II:
After adding 1 mol of A: $n_A = 4$, $n_B = 1$
\[
x_A = \frac{4}{5}, \quad x_B = \frac{1}{5}
\]
Given vapour pressure of solution:
\[
520 = \frac{4}{5}P_A^\circ + \frac{1}{5}P_B^\circ
\]
\[
2600 = 4P_A^\circ + P_B^\circ \qquad (2)
\]
Subtracting equation (1) from equation (2):
\[
600 = P_A^\circ
\]
Substituting $P_A^\circ = 600$ in equation (1):
\[
2000 = 3(600) + P_B^\circ
\]
\[
P_B^\circ = 200 \text{ mm Hg}
\]
\[
\therefore \text{Vapour pressure of B in pure state} = 200 \text{ mm Hg}
\]