Step 1: Take a parametric point on the parabola.
For $x^2 = 4y$, a parametric point is
\[
P = (2t,\,t^2)
\]
Step 2: Find mirror image of point in the line $x-y=1$.
Using reflection formula, mirror image $Q(h,k)$ of $P$ is
\[
Q = \left(2t - \frac{2(2t - t^2 - 1)}{2},\; t^2 + \frac{2(2t - t^2 - 1)}{2}\right)
\]
Step 3: Simplify coordinates.
\[
Q = (t^2 + 1,\,2t - 1)
\]
Step 4: Eliminate parameter $t$.
From $y = 2t - 1$,
\[
t = \frac{y+1}{2}
\]
Substitute in $x = t^2 + 1$,
\[
x = \frac{(y+1)^2}{4} + 1
\]
Step 5: Write equation in standard form.
\[
(y+1)^2 = 4(x-1)
\]
Step 6: Compare with given equation.
\[
(y+a)^2 = b(x-c)
\]
So,
\[
a = 1,\quad b = 4,\quad c = 1
\]
Step 7: Final calculation.
\[
a+b+c = 1+4+1 = 6
\]
Final conclusion.
The value of $(a+b+c)$ is 6.