Step 1: According to Raoult’s Law, the vapour pressure of a solution is given by:
\[
P_{\text{solution}} = P_{\text{solvent}} \times X_{\text{solvent}} + P_{\text{solute}} \times X_{\text{solute}}
\]
Where:
- \( P_{\text{solution}} \) is the vapour pressure of the solution.
- \( P_{\text{solvent}} \) is the vapour pressure of the pure solvent.
- \( X_{\text{solvent}} \) and \( X_{\text{solute}} \) are the mole fractions of the solvent and solute, respectively.
Step 2: The equation can be rewritten as:
\[
P_{\text{solution}} = P_{\text{solvent}} \times X_{\text{solvent}}
\]
Since the solute has no vapour pressure, we can ignore the second term.
Step 3: Rearranging the equation to solve for the mole fraction of the solute \( X_{\text{solute}} \):
\[
P_{\text{solution}} = P_{\text{solvent}} (1 - X_{\text{solute}})
\]
\[
X_{\text{solute}} = 1 - \frac{P_{\text{solution}}}{P_{\text{solvent}}}
\]
Step 4: Substitute the given values:
\[
X_{\text{solute}} = 1 - \frac{600 \, \text{mmHg}}{640 \, \text{mmHg}} = 1 - 0.9375 = 0.0625
\]
Thus, the mole fraction of the solute is:
\[
\boxed{0.0625}
\]