To solve this problem, we need to analyze the relationship between the mole fractions in liquid and vapor phases for a binary solution of two volatile components 1 and 2. This relationship can be derived using Raoult's Law and Dalton's Law for ideal solutions and vapors.
Thus, the correct answer is the option with slope and intercept \(\frac{p_1^0}{p_2^0} - \frac{p_1^0}{p_2^0}\), which matches the interpretation of the question.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
