Given:
Mass of each wheel
m = 2 Kg,
R = 50 cm= 0.5 m,
d = 75 cm = 0.75 m

Step 1: Formula for Moment of Inertia
The moment of inertia \( I \) for the system is given by: \[ I = \left( \frac{2}{5} m R^2 + m d^2 \right) \times 2 \]
Step 2: Substituting the given values
Substituting the values \( m = 2 \, \text{kg}, R = 0.5 \, \text{m}, d = 0.75 \, \text{m} \) into the equation: \[ I = 2 \left( \frac{2}{5} \times 2 \times \left( \frac{1}{2} \right)^2 + 2 \times \left( \frac{3}{4} \right)^2 \right) \]
Step 3: Simplifying the equation
\[ I = 2 \left( \frac{2}{5} \times 2 \times \frac{1}{4} + 2 \times \frac{9}{16} \right) \]
\[ I = 2 \left( \frac{1}{10} + \frac{9}{8} \right) = 2 \times \frac{53}{40} = \frac{53}{20} \, \text{kg} \cdot \text{m}^2 \]
Final Answer:
\[ X = 53 \, \text{kg} \cdot \text{m}^2 \]
The moment of inertia \( I \) of each sphere about the central axis (using the parallel axis theorem) is:
\[ I_{\text{total}} = 2 \left( I_{\text{sphere}} + md^2 \right). \]For a solid sphere:
\[ I_{\text{sphere}} = \frac{2}{5}mR^2 = \frac{2}{5} \times 2 \times (0.5)^2 = 0.2 \, \text{kg m}^2. \]Distance \( d \) from the center of each sphere to the midpoint of the rod is \( 0.75 \, \text{m} \).
So,
\[ I_{\text{total}} = 2 \left( 0.2 + 2 \times (0.75)^2 \right) = 2 \left( 0.2 + 1.125 \right) = \frac{53}{20} \, \text{kg m}^2. \]Thus, \( x = 53 \).
A circular disc has radius \( R_1 \) and thickness \( T_1 \). Another circular disc made of the same material has radius \( R_2 \) and thickness \( T_2 \). If the moments of inertia of both the discs are same and \[ \frac{R_1}{R_2} = 2, \quad \text{then} \quad \frac{T_1}{T_2} = \frac{1}{\alpha}. \] The value of \( \alpha \) is __________.
A solid cylinder of radius $\dfrac{R}{3}$ and length $\dfrac{L}{2}$ is removed along the central axis. Find ratio of initial moment of inertia and moment of inertia of removed cylinder. 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 