A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of \( 2 \times 10^5 \, \text{m/s} \). When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is \( x \times 10^4 \, \text{N/C} \). The value of \( x \) is \(\_\_\_\_\_\). (Take the mass of the proton as \( 1.6 \times 10^{-27} \, \text{kg} \)).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
In 1785, french physicist Charles Augustin de Coulomb coined a tangible relationship in mathematical form between two bodies that have been electrically charged. He represented an equation for the force causing the bodies to attract or repel each other which is commonly known as Coulomb’s law or Coulomb’s inverse-square law.
As per Coulomb’s law, the force of attraction or repulsion between two charged bodies is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. It acts along the line joining the two charges regarded to be point charges.
Coulomb’s Law has an abundant application to modern life, from Xerox machines to laser printers, to powder coating.