Consider the forces acting on the spheres in air and water:
\(\tan \frac{\theta}{2} = \frac{F}{mg} = \frac{q^2}{4 \pi \epsilon_0 r^2 mg}\)
When suspended in water:
\(\tan \frac{\theta}{2} = \frac{F'}{mg'} = \frac{q^2}{4 \pi \epsilon_0 \epsilon_r r^2 m g_{\text{eff}}}\)
Equating both expressions and using the relation:
\(\epsilon_r g = \epsilon_0 \epsilon_r g \left[ 1 - \frac{1}{1.5} \right]\)
Simplifying gives:
\(\epsilon_r = 3\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: