Consider the forces acting on the spheres in air and water:
\(\tan \frac{\theta}{2} = \frac{F}{mg} = \frac{q^2}{4 \pi \epsilon_0 r^2 mg}\)
When suspended in water:
\(\tan \frac{\theta}{2} = \frac{F'}{mg'} = \frac{q^2}{4 \pi \epsilon_0 \epsilon_r r^2 m g_{\text{eff}}}\)
Equating both expressions and using the relation:
\(\epsilon_r g = \epsilon_0 \epsilon_r g \left[ 1 - \frac{1}{1.5} \right]\)
Simplifying gives:
\(\epsilon_r = 3\)
A point charge $ +q $ is placed at the origin. A second point charge $ +9q $ is placed at $ (d, 0, 0) $ in Cartesian coordinate system. The point in between them where the electric field vanishes is:
A small bob of mass 100 mg and charge +10 µC is connected to an insulating string of length 1 m. It is brought near to an infinitely long non-conducting sheet of charge density \( \sigma \) as shown in figure. If the string subtends an angle of 45° with the sheet at equilibrium, the charge density of sheet will be :
Consider two infinitely large plane parallel conducting plates as shown below. The plates are uniformly charged with a surface charge density \( +\sigma \) and \( -\sigma \). The force experienced by a point charge \( +q \) placed at the mid point between the plates will be:
The standard enthalpy and standard entropy of decomposition of \( N_2O_4 \) to \( NO_2 \) are 55.0 kJ mol\(^{-1}\) and 175.0 J/mol respectively. The standard free energy change for this reaction at 25°C in J mol\(^{-1}\) is (Nearest integer)
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
Consider the following sequence of reactions to produce major product (A):
The molar mass of the product (A) is g mol−1. (Given molar mass in g mol−1 of C: 12,
H: 1, O: 16, Br: 80, N: 14, P: 31)