
Identify the valid statements relevant to the given circuit at the instant when the key is closed.

\( \text{A} \): There will be no current through resistor R.
\( \text{B} \): There will be maximum current in the connecting wires.
\( \text{C} \): Potential difference between the capacitor plates A and B is minimum.
\( \text{D} \): Charge on the capacitor plates is minimum.
Choose the correct answer from the options given below:
For a short dipole placed at origin O, the dipole moment P is along the X-axis, as shown in the figure. If the electric potential and electric field at A are V and E respectively, then the correct combination of the electric potential and electric field, respectively, at point B on the Y-axis is given by:

If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
A wire of resistance $ R $ is bent into a triangular pyramid as shown in the figure, with each segment having the same length. The resistance between points $ A $ and $ B $ is $ \frac{R}{n} $. The value of $ n $ is:
Capacitors commonly known as Condensers are passive components, similar to a resistor. In capacitors, charges are usually stored in the form of an "electrical field". Electrical and electronic circuits depend on the same which is made up of two parallel metal plates that are not connected to one another. The two plates are separated by a non-conducting insulating medium called dielectric.
Read More: Types of Capacitors