Step 1: The electrostatic force between two charges is given by Coulomb's law: \[ F = k \frac{q_1 q_2}{r^2} \] where \( q_1 \) and \( q_2 \) are the charges, \( r \) is the distance between them, and \( k \) is Coulomb's constant.
Step 2: Initially, the force between the two charges is \( F = k \frac{q_1 q_2}{r^2} \).
Step 3: After the balls are brought into contact, the charges redistribute equally, so: \[ q_1 = q_2 = q \] \[ F' = k \frac{q^2}{\left(\frac{r}{2}\right)^2} = 4k \frac{q^2}{r^2} \] \[ F' = 4.5F \]
Step 4: From the equation, we find that: \[ 4 \cdot F = 4.5F \quad \Rightarrow \quad q_1 = 2q_2 \]
Step 5: The ratio of charges is \( 2:1 \).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below:
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).