We know, when a charge q is brought from infinity to a point where electric potential V due to any source charge is present, then Work done is given by
W = qV
Let two charges q1 and q2 initially lie at infinity.
Initially, when charge q1 is brought from infinity to a particular point, due to absence of electric potential at that point no work is done i.e.
W1 = q1 V = q1 x 0 = 0
Now when charge q2 is brought from infinity to a point at distance r from the charge q1, the electric potential is present at that point due to charge q1, then work done in bringing q2 is given by
W2 = q2 x V = q2 x 1/4πϵ0 q1/r
⇒ W2 = 1/4πϵ0 q1q2/r
Total work done
W = W1 + W2
⇒ W = 0 + 1/4πϵ0 q1q2/r
⇒ W = 1/4πϵ0 q1q2/r
This work done is equal to the potential energy (U) of the system of the two charges. Hence
U = 1/4πϵ0 q1q2/r
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: