Step 1: Understanding the Question:
Two flasks containing nitrogen gas at different conditions are connected. We need to find the final equilibrium pressure after the valve is opened. Since the flasks are not thermally insulated, we assume the system is isolated, so the total internal energy is conserved.
Step 2: Calculate Initial Moles in Each Flask:
Molar mass of N\(_2\) = 28.0 g/mol.
- Flask I: \( n_1 = \frac{2.8 \, \text{g}}{28.0 \, \text{g/mol}} = 0.1 \) mol. T\(_1\) = 300 K, V\(_1\) = 1 L.
- Flask II: \( n_2 = \frac{0.2 \, \text{g}}{28.0 \, \text{g/mol}} \approx 0.00714 \) mol. T\(_2\) = 60 K, V\(_2\) = 2 L.
Step 3: Determine the Final State:
When the valve is opened, the gases mix.
- Total moles, \( n_f = n_1 + n_2 = 0.1 + 0.00714 = 0.10714 \) mol.
- Total volume, \( V_f = V_1 + V_2 = 1 \, \text{L} + 2 \, \text{L} = 3 \, \text{L} = 3 \times 10^{-3} \) m\(^3\).
To find the final temperature, \( T_f \), we use the conservation of internal energy. For an ideal diatomic gas like N\(_2\), \( U = nC_vT = n(\frac{5}{2}R)T \).
\( U_{initial} = U_1 + U_2 = n_1 C_v T_1 + n_2 C_v T_2 \)
\( U_{final} = n_f C_v T_f \)
Setting \( U_{initial} = U_{final} \):
\( n_1 T_1 + n_2 T_2 = n_f T_f \)
\( T_f = \frac{n_1 T_1 + n_2 T_2}{n_f} = \frac{(0.1)(300) + (0.00714)(60)}{0.10714} = \frac{30 + 0.4284}{0.10714} \approx 283.9 \) K.
Step 4: Calculate Final Pressure:
Using the Ideal Gas Law, \( P_f V_f = n_f R T_f \).
\[ P_f = \frac{n_f R T_f}{V_f} \]
\[ P_f = \frac{(0.10714 \, \text{mol}) \times (8.31 \, \text{J mol}^{-1} \text{K}^{-1}) \times (283.9 \, \text{K})}{3 \times 10^{-3} \, \text{m}^3} \approx 84260 \, \text{Pa} \]
Step 5: Convert to bar and find x:
1 bar = 10\(^5\) Pa.
\[ P_f = \frac{84260}{10^5} = 0.8426 \, \text{bar} \]
We are given \( P_f = x \times 10^{-2} \) bar.
\[ 0.8426 = x \times 10^{-2} \]
\[ x = 84.26 \]
The value of x as an integer is 84.