For an adiabatic process, the equation \(TV^{\gamma-1} = \text{constant}\) holds.
Between points \(a\) and \(d\):
\[ T_a \cdot V_a^{\gamma-1} = T_d \cdot V_d^{\gamma-1}. \]
\[ \frac{V_a}{V_d} = \frac{T_d}{T_a}. \]
Between points \(b\) and \(c\):
\[ T_b \cdot V_b^{\gamma-1} = T_c \cdot V_c^{\gamma-1}. \]
\[ \frac{V_b}{V_c} = \frac{T_c}{T_b}. \]
Given \(T_d = T_c\) and \(T_a = T_b\), we have:
\[ \frac{V_a}{V_d} = \frac{V_b}{V_c}. \]
Final Answer: \(\frac{V_a}{V_d} = \frac{V_b}{V_c}\).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).