For an adiabatic process, the equation \(TV^{\gamma-1} = \text{constant}\) holds.
Between points \(a\) and \(d\):
\[ T_a \cdot V_a^{\gamma-1} = T_d \cdot V_d^{\gamma-1}. \]
\[ \frac{V_a}{V_d} = \frac{T_d}{T_a}. \]
Between points \(b\) and \(c\):
\[ T_b \cdot V_b^{\gamma-1} = T_c \cdot V_c^{\gamma-1}. \]
\[ \frac{V_b}{V_c} = \frac{T_c}{T_b}. \]
Given \(T_d = T_c\) and \(T_a = T_b\), we have:
\[ \frac{V_a}{V_d} = \frac{V_b}{V_c}. \]
Final Answer: \(\frac{V_a}{V_d} = \frac{V_b}{V_c}\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: