Step 1: Define the thermal resistance of each rod.
The thermal resistance \( R_{th} \) of a cylindrical rod is given by \( R_{th} = \frac{L}{KA} \), where \( L \) is the length, \( K \) is the thermal conductivity, and \( A \) is the cross-sectional area of the rod. The cross-sectional area of a cylindrical rod with radius \( r \) is \( A = \pi r^2 \).
For rod A:
Length \( L_A \)
Radius \( r_A \)
Thermal conductivity \( K_A \)
Area \( A_A = \pi r_A^2 \)
Thermal resistance \( R_{th,A} = \frac{L_A}{K_A \pi r_A^2} \)
For rod B:
Length \( L_B \)
Radius \( r_B \)
Thermal conductivity \( K_B \)
Area \( A_B = \pi r_B^2 \)
Thermal resistance \( R_{th,B} = \frac{L_B}{K_B \pi r_B^2} \)
Step 2: Use the given ratios to relate the thermal resistances.
We are given \( \frac{L_A}{L_B} = \frac{1}{2} \), \( \frac{r_A}{r_B} = 2 \), and \( \frac{K_A}{K_B} = \frac{1}{2} \).
Consider the ratio of the thermal resistances:
\[
\frac{R_{th,A}}{R_{th,B}} = \frac{\frac{L_A}{K_A \pi r_A^2}}{\frac{L_B}{K_B \pi r_B^2}} = \frac{L_A}{L_B} \cdot \frac{K_B}{K_A} \cdot \frac{\pi r_B^2}{\pi r_A^2} = \frac{L_A}{L_B} \cdot \frac{K_B}{K_A} \cdot \left(\frac{r_B}{r_A}\right)^2
\]
Substitute the given ratios:
\[
\frac{R_{th,A}}{R_{th,B}} = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{1/2}\right) \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{2} \cdot 2 \cdot \frac{1}{4} = \frac{1}{4}
\]
So, \( R_{th,A} = \frac{1}{4} R_{th,B} \), or \( R_{th,B} = 4 R_{th,A} \).
Step 3: Apply the concept of thermal current in series.
When the rods are joined in series, the rate of heat flow (thermal current \( I_{th} \)) through both rods is the same at equilibrium. Let the temperature of the interface be \( T \). The thermal current through rod A is given by:
\[
I_{th} = \frac{T_1 - T}{R_{th,A}} = \frac{400 - T}{R_{th,A}}
\]
The thermal current through rod B is given by:
\[
I_{th} = \frac{T - T_2}{R_{th,B}} = \frac{T - 200}{R_{th,B}}
\]
Equating the thermal currents:
\[
\frac{400 - T}{R_{th,A}} = \frac{T - 200}{R_{th,B}}
\]
Substitute \( R_{th,B} = 4 R_{th,A} \):
\[
\frac{400 - T}{R_{th,A}} = \frac{T - 200}{4 R_{th,A}}
\]
Multiply both sides by \( 4 R_{th,A} \):
\[
4(400 - T) = T - 200
\]
\[
1600 - 4T = T - 200
\]
\[
1600 + 200 = T + 4T
\]
\[
1800 = 5T
\]
\[
T = \frac{1800}{5} = 360 \, K
\]
The temperature of the rods interface is \( 360 \, K \).