The emf induced in the second coil is given by:
\[ \text{EMF} = -M \frac{di}{dt} \]
Substitute \( i = i_0 \sin \omega t \):
\[ \frac{di}{dt} = i_0 \omega \cos \omega t \]
Thus, the maximum emf (when \( \cos \omega t = 1 \)) is:
\[ \text{EMF}_{\text{max}} = Mi_0 \omega = (0.002) \times (5) \times (50\pi) = \frac{\pi}{2} \, \text{V} \]
Therefore, \(\alpha = 2\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: