Here, $I_1 = I, I_2 = 4l$
At constructive interference position
$I_{c} = \left(\sqrt{I_{1} } + \sqrt{I_{2}}\right)^{2} $
$ \, \, \, \, = \left(\sqrt{I} + \sqrt{4I}\right)^{2} = \left(3 \sqrt{I}\right)^{2} = 9I$
At destructive interference position,
$I_{d} = \left(\sqrt{I_{1} } - \sqrt{I_{2}}\right)^{2} $
$ \, \, \, \, = \left(\sqrt{I} - \sqrt{4I}\right)^{2} = \left(- \sqrt{I}\right)^{2} = I$