To find the length of the direct common tangent between two externally touching circles, we can use the formula for the length of a tangent between two circles with radii \( r_1 \) and \( r_2 \) and distance \( d \) between their centers:
\( L = \sqrt{d^2 - (r_1 + r_2)^2} \).
Here, the given values are:
Since the circles touch externally, the distance between their centers \( d = r_1 + r_2 = 4 + 9 = 13 \, \text{cm} \). Substituting these values into the tangent length formula gives:
\[ L = \sqrt{13^2 - (4 + 9)^2} \]
\[ L = \sqrt{169 - 169} \]
\[ L = \sqrt{0} \]
\[ L = 0 \]
Thus, the length of the direct common tangent is \( 0 \) cm.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.