Given two charges \( q \) and \( 3q \) separated by a distance \( r \). The electric field at a point \( x \) from charge \( q \) where the net electric field is zero is:
\[ \vec{E}_{\text{net}} = 0 \]
Equating the electric fields due to both charges:
\[ k \frac{q}{x^2} = k \frac{3q}{(r - x)^2} \]
Simplifying:
\[ (r - x)^2 = 3x^2 \] \[ r - x = \sqrt{3}x \]
Rearranging gives:
\[ x = \frac{r}{\sqrt{3} + 1} \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: