To calculate the torque on a dipole, always ensure the units of electric field, charge, and distance are consistent. Convert non-SI units like dyne/C to N/C before substituting into the formula.
The torque acting on an electric dipole in a uniform electric field is given by:
\[ \tau = pE \sin \theta, \]where:
Step 1: Calculate the dipole moment (\( p \)).
The dipole moment is:
\[
p = q \cdot d = (0.01) \cdot (0.4 \times 10^{-3}) = 4 \times 10^{-6} \, \text{Cm}.
\]
Step 2: Substitute values into the torque formula.
The electric field is given in dyne/C. Convert it to SI units:
\[
1 \, \text{dyne/C} = 10^{-5} \, \text{N/C}, \quad E = 10 \times 10^{-5} = 10^{-4} \, \text{N/C}.
\]
Now substitute the values:
\[
\tau = (4 \times 10^{-6}) \cdot (10^{-4}) \cdot \sin 30^\circ.
\]
Step 3: Simplify the expression.
\[
\sin 30^\circ = 0.5,
\]
so:
\[
\tau = (4 \times 10^{-6}) \cdot (10^{-4}) \cdot 0.5 = 2 \times 10^{-10} \, \text{Nm}.
\]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: