The electrostatic potential energy \( U \) between two point charges is given by the formula:
\[
U = \frac{k q_1 q_2}{r},
\]
where:
- \( k = \frac{1}{4 \pi \epsilon_0} \) is Coulomb’s constant,
- \( q_1 = 7 \, \text{mC} = 7 \times 10^{-3} \, \text{C} \),
- \( q_2 = -4 \, \text{mC} = -4 \times 10^{-3} \, \text{C} \),
- \( r \) is the distance between the charges.
We can calculate the distance \( r \) between the charges using the distance formula:
\[
r = \sqrt{(7 - (-7))^2 + (0 - 0)^2 + (0 - 0)^2} = \sqrt{(14)^2} = 14 \, \text{m}.
\]
Now, using the value of Coulomb's constant \( k = \frac{1}{4 \pi \epsilon_0} \):
\[
k = \frac{1}{4 \pi \times 8.85 \times 10^{-12}} = 9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2.
\]
Substitute the values into the formula for potential energy:
\[
U = \frac{9 \times 10^9 \times (7 \times 10^{-3}) \times (-4 \times 10^{-3})}{14}.
\]
\[
U = \frac{9 \times 10^9 \times (-28 \times 10^{-6})}{14} = -18 \, \text{J}.
\]
Thus, the electrostatic potential energy is \( -18 \, \text{J} \).