Series case:
- Total emf \(= 3\,{V}\), total internal resistance \(= 2\,\Omega\)
Current:
\[
I_1 = \frac{3}{R + 2}
\Rightarrow V_1 = I_1 R = \frac{3R}{R + 2}
\]
Parallel case:
- Equivalent emf = \(1.5\,{V}\), equivalent internal resistance = \(0.5\,\Omega\)
Current:
\[
I_2 = \frac{1.5}{R + 0.5}
\Rightarrow V_2 = I_2 R = \frac{1.5R}{R + 0.5}
\]
Given:
\[
\frac{V_1}{V_2} = \frac{4}{3}
\Rightarrow \frac{3R}{R + 2} \cdot \frac{R + 0.5}{1.5R} = \frac{4}{3}
\]
Solving:
\[
\frac{3(R + 0.5)}{1.5(R + 2)} = \frac{4}{3}
\Rightarrow \frac{2(R + 0.5)}{(R + 2)} = \frac{4}{3}
\Rightarrow 6(R + 0.5) = 4(R + 2)
\Rightarrow 6R + 3 = 4R + 8
\Rightarrow R = 2.5\,\Omega
\]