The tension \( T \) in the wire, due to the masses, is given by:
\[ T = \left( \frac{2m_1m_2}{m_1 + m_2} \right) g = \frac{80}{3} \, \text{N}. \]The cross-sectional area \( A \) of the wire is:
\[ A = \pi r^2 = 16\pi \times 10^{-10} \, \text{m}^2. \]The strain \( \frac{\Delta \ell}{\ell} \) in the wire is given by:
\[ \text{Strain} = \frac{F}{AY} = \frac{T}{AY}. \]Substitute the values:
\[ \text{Strain} = \frac{\frac{80}{3}}{16\pi \times 10^{-10} \times 2 \times 10^{11}} = \frac{1}{12\pi}. \]Thus, \(\alpha = 12\).
Match List-I with List-II: List-I