The tension \( T \) in the wire, due to the masses, is given by:
\[ T = \left( \frac{2m_1m_2}{m_1 + m_2} \right) g = \frac{80}{3} \, \text{N}. \]The cross-sectional area \( A \) of the wire is:
\[ A = \pi r^2 = 16\pi \times 10^{-10} \, \text{m}^2. \]The strain \( \frac{\Delta \ell}{\ell} \) in the wire is given by:
\[ \text{Strain} = \frac{F}{AY} = \frac{T}{AY}. \]Substitute the values:
\[ \text{Strain} = \frac{\frac{80}{3}}{16\pi \times 10^{-10} \times 2 \times 10^{11}} = \frac{1}{12\pi}. \]Thus, \(\alpha = 12\).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: