Question:

Three students \( X, Y, Z \) appear for an exam. Their passing probabilities are: \[ P(X) = \frac{1}{5},\quad P(Y) = \frac{1}{4},\quad P(Z) = 1 - \frac{2}{3} = \frac{1}{3} \] What is the probability that at least two of them pass?

Show Hint

When calculating "at least" probabilities, subtract complementary cases from 1. Consider none, one, and two successes.
Updated On: May 17, 2025
  • \( \frac{1}{6} \)
  • \( \frac{2}{5} \)
  • \( \frac{3}{4} \)
  • \( \frac{3}{5} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We need \( P(\text{at least 2 pass}) = 1 - P(\text{none pass}) - P(\text{only one passes}) \) Let: \[ P(X') = \frac{4}{5},\quad P(Y') = \frac{3}{4},\quad P(Z') = \frac{2}{3} \] 1. None pass: \[ P(X')P(Y')P(Z') = \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} = 1.0 \Rightarrow \text{(Contradiction—check again)} \] Actually compute: None pass: \[ P(X' \cap Y' \cap Z') = \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} = \frac{24}{60} = \frac{2}{5} \] Only one passes: - X passes: \( \frac{1}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} = \frac{6}{60} \) - Y passes: \( \frac{4}{5} \cdot \frac{1}{4} \cdot \frac{2}{3} = \frac{8}{60} \) - Z passes: \( \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{1}{3} = \frac{12}{60} \) Total = \( \frac{6 + 8 + 12}{60} = \frac{26}{60} = \frac{13}{30} \) Now: \[ P(\text{at least 2 pass}) = 1 - \left( \frac{2}{5} + \frac{13}{30} \right) = 1 - \left( \frac{12 + 13}{30} \right) = 1 - \frac{25}{30} = \frac{1}{6} \]
Was this answer helpful?
0
0