Let us define the events: - Event 1: A white ball is drawn from Bag I. - Event 2: A black ball is drawn from Bag I. - Event 3: A white ball is drawn from Bag II after transferring the ball from Bag I. We want to find the probability of drawing a white ball from Bag II after transferring a ball from Bag I. This can be done using the law of total probability.
Step 1: Probability of drawing a white ball from Bag I The probability of drawing a white ball from Bag I is: \[ P(\text{White from Bag I}) = \frac{4}{9} \quad \text{(since there are 4 white balls out of 9 total balls in Bag I)} \] The probability of drawing a black ball from Bag I is: \[ P(\text{Black from Bag I}) = \frac{5}{9} \quad \text{(since there are 5 black balls out of 9 total balls in Bag I)} \]
Step 2: Conditional probability of drawing a white ball from Bag II If a white ball is transferred to Bag II, Bag II will contain 7 white balls and 7 black balls, for a total of 14 balls. The probability of drawing a white ball from Bag II is: \[ P(\text{White from Bag II} | \text{White transferred}) = \frac{7}{14} = \frac{1}{2} \] If a black ball is transferred to Bag II, Bag II will contain 6 white balls and 8 black balls, for a total of 14 balls. The probability of drawing a white ball from Bag II is: \[ P(\text{White from Bag II} | \text{Black transferred}) = \frac{6}{14} = \frac{3}{7} \]
Step 3: Total probability Now, using the law of total probability, we can calculate the total probability of drawing a white ball from Bag II: \[ P(\text{White from Bag II}) = P(\text{White from Bag I}) \cdot P(\text{White from Bag II} | \text{White transferred}) + P(\text{Black from Bag I}) \cdot P(\text{White from Bag II} | \text{Black transferred}) \] Substitute the values: \[ P(\text{White from Bag II}) = \frac{4}{9} \cdot \frac{1}{2} + \frac{5}{9} \cdot \frac{3}{7} \] \[ = \frac{4}{18} + \frac{15}{63} = \frac{14}{63} + \frac{15}{63} = \frac{29}{63} \] Thus, the probability that the ball drawn is white is: \[ \boxed{\frac{29}{63}} \]
Based upon the results of regular medical check-ups in a hospital, it was found that out of 1000 people, 700 were very healthy, 200 maintained average health and 100 had a poor health record.
Let \( A_1 \): People with good health,
\( A_2 \): People with average health,
and \( A_3 \): People with poor health.
During a pandemic, the data expressed that the chances of people contracting the disease from category \( A_1, A_2 \) and \( A_3 \) are 25%, 35% and 50%, respectively.
Based upon the above information, answer the following questions:
(i) A person was tested randomly. What is the probability that he/she has contracted the disease?}
(ii) Given that the person has not contracted the disease, what is the probability that the person is from category \( A_2 \)?
Time (Hours) | [A] (M) |
---|---|
0 | 0.40 |
1 | 0.20 |
2 | 0.10 |
3 | 0.05 |
The reaction between A2 (g) and B2 (g) was carried out in a sealed isothermal container. The rate law for the reaction was found to be:
Rate = \( k[\text{A}_2][\text{B}_2] \)
If 1 mole of A2 (g) was added to the reaction chamber and the temperature was kept constant, then predict the change in rate of the reaction and the rate constant.
Give explanation for each of the following observations:
(a) With the same d-orbital configuration (d4), Mn3+ ion is an oxidizing agent whereas Cr2+ ion is a reducing agent.
(b) Actinoid contraction is greater from element to element than that among lanthanoids.
(c) Transition metals form a large number of interstitial compounds with H, B, C, and N.