Given:
TS is a tangent to the circle at point S, and O is the center of the circle.
Angle at O is marked as \(90^\circ\) (since the radius is perpendicular to the tangent at the point of contact).
Angle ∠SOT = 90°, ∠OST = x°, ∠OTS = 3x°
Step 1: Use Triangle Angle Sum Property
In triangle OST:
\[
\angle SOT + \angle OST + \angle OTS = 180^\circ
\]
\[
90^\circ + x^\circ + 3x^\circ = 180^\circ
\Rightarrow 90^\circ + 4x^\circ = 180^\circ
\Rightarrow 4x = 90
\Rightarrow x = 22.5^\circ
\]
Step 2: Find the value of \(2x\)
\[
2x = 2 \times 22.5^\circ = 45^\circ
\]
Final Answer:
The value of \(2x^\circ\) is 45°.