In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is
Given:
In \(\triangle ABC\), \(DE \parallel BC\)
\(AE = (2x + 1) \, \text{cm}\), \(EC = 4 \, \text{cm}\)
\(AD = (x + 1) \, \text{cm}\), \(DB = 3 \, \text{cm}\)
To find:
The value of \(x\).
Step 1: Use the Basic Proportionality Theorem (Thales theorem)
Since \(DE \parallel BC\),
\[ \frac{AD}{DB} = \frac{AE}{EC} \]
Step 2: Substitute the given values
\[ \frac{x + 1}{3} = \frac{2x + 1}{4} \]
Step 3: Cross multiply and solve for \(x\)
\[ 4(x + 1) = 3(2x + 1) \] \[ 4x + 4 = 6x + 3 \] \[ 4x - 6x = 3 - 4 \] \[ -2x = -1 \] \[ x = \frac{1}{2} \]
Summary:
\[ \boxed{x = \frac{1}{2}} \]
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative
In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD.
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.