Step 1: Applying Heisenberg's Uncertainty Principle
\[
\Delta x \cdot \Delta p \geq \frac{h}{4\pi}
\]
where \( h = 6.6 \times 10^{-34} \) Js, \( \Delta x = 10^{-33} \) m, and mass \( m = 10 \) g \( = 0.01 \) kg.
Step 2: Calculating Uncertainty in Momentum
\[
\Delta p \geq \frac{6.6 \times 10^{-34}}{4\pi \times 10^{-33}}
\]
\[
\Delta p \geq \frac{6.6}{12.56} \times 10^{-1} = 0.525 \times 10^{-1} = 0.0525 \text{ kg m/s}
\]
Step 3: Finding Velocity Uncertainty
\[
\Delta v = \frac{\Delta p}{m} = \frac{0.0525}{0.01} = 5.25 \text{ m/s}
\]
Step 4: Finding Percentage Accuracy
\[
\text{Percentage Accuracy} = \left( \frac{\Delta v}{v} \right) \times 100
\]
\[
= \left( \frac{5.25}{52.5} \right) \times 100 = 10\%
\]
\bigskip