6.023x1023
60.23x1023
0.6023x1023
602.3x1023
6023x1023
Given: 1 mole of methane (\( \text{CH}_4 \))
Electron count per molecule:
Avogadro's number: \( 6.023 \times 10^{23} \) molecules/mole
Total electrons: \[ 10 \times 6.023 \times 10^{23} = 60.23 \times 10^{23} \]
Thus, the correct option is (B): \( 60.23 \times 10^{23} \).
1. Understanding the problem:
We are tasked with determining the total number of electrons in one mole of methane (\( \text{CH}_4 \)).
2. Analyze the composition of methane:
3. Calculate the total number of electrons in one mole of methane:
5. Final answer:
The correct option is (B) \( 60.23 \times 10^{23} \).
Choose the correct option
Molecule | Shape | ||
---|---|---|---|
A | \(BrF_5\) | i | T-shape |
B | \(H_2O\) | ii | See-saw |
C | \(ClF_3\) | iii | Bent |
D | \(SF_4\) | iv | Square Pyramidal |
The relation between nm (nm = the number of permissible values of magnetic quantum number (m)) for a given value of azimuthal quantum number (l), is
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.