Step 1: Use the Rydberg formula for X-ray wavelengths.
The characteristic K\(_\alpha\) X-ray wavelength for an atom can be calculated using the formula:
\[
\lambda = \frac{R \cdot Z^2}{n_1^2 - n_2^2},
\]
where
\[
R = 1.097 \times 10^7 \, \text{m}^{-1} \quad \text{(Rydberg constant)} \quad \text{and} \quad Z = 42 \quad \text{(atomic number of Mo)}.
\]
For the K\(_\alpha\) transition, \( n_1 = 2 \) and \( n_2 = 1 \), so
\[
\lambda = \frac{1.097 \times 10^7 \times 42^2}{2^2 - 1^2}.
\]
Step 2: Simplify and calculate the wavelength.
First, calculate the numerator:
\[
42^2 = 1764, \quad 1.097 \times 10^7 \times 1764 = 1.938 \times 10^{10}.
\]
Now, calculate the denominator:
\[
2^2 - 1^2 = 4 - 1 = 3.
\]
Thus,
\[
\lambda = \frac{1.938 \times 10^{10}}{3} = 6.46 \times 10^9 \, \text{m}.
\]
Converting to nanometers:
\[
\lambda = 6.46 \, \text{nm} = 0.646 \, \text{Å}.
\]
Final Answer: The wavelength of K\(_\alpha\) X-ray photons from Mo is \( \boxed{0.6} \, \text{Å}. \)