First, find the moles of ethanol required: \[ \text{Moles of ethanol} = M \times V = 0.25\, \text{mol/L} \times 3\, \text{L} = 0.75\, \text{mol} \] Now, calculate the mass of ethanol: \[ \text{Mass} = \text{moles} \times \text{molar mass} = 0.75 \times 60 = 45\, \text{g} \] Using the density formula, find the volume: \[ \text{Volume} = \frac{{\text{Mass}}}{{\text{Density}}} = \frac{45}{0.36} = 125\, \text{mL} \] Thus, the required volume of ethanol is 125 mL.
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: