The force exerted by mercury on the bottom of the tube can be calculated as:
\[ F = P_0A + \rho_m ghA \]
where:
- \( P_0 = 10^5 \, \text{Nm}^{-2} \) (atmospheric pressure),
- \( A = \pi r^2 = \frac{22}{7} \times (2 \times 10^{-2})^2 \) (area of the base),
- \( \rho_m = 1.36 \times 10^4 \, \text{kg m}^{-3} \) (density of mercury),
- \( g = 10 \, \text{ms}^{-2} \),
- \( h = 30 \times 10^{-2} \, \text{m} \) (height of mercury column).
Calculating \( A \):
\[ A = \frac{22}{7} \times (2 \times 10^{-2})^2 \]
Substitute into the force equation:
\[ F = 10^5 \times \frac{22}{7} \times (2 \times 10^{-2})^2 + 1.36 \times 10^4 \times 10 \times (30 \times 10^{-2}) \times \frac{22}{7} \times (2 \times 10^{-2})^2 \]
Solving this:
\[ F = 51.29 + 125.71 = 177 \, \text{N}. \]
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to