The force exerted by mercury on the bottom of the tube can be calculated as:
\[ F = P_0A + \rho_m ghA \]
where:
- \( P_0 = 10^5 \, \text{Nm}^{-2} \) (atmospheric pressure),
- \( A = \pi r^2 = \frac{22}{7} \times (2 \times 10^{-2})^2 \) (area of the base),
- \( \rho_m = 1.36 \times 10^4 \, \text{kg m}^{-3} \) (density of mercury),
- \( g = 10 \, \text{ms}^{-2} \),
- \( h = 30 \times 10^{-2} \, \text{m} \) (height of mercury column).
Calculating \( A \):
\[ A = \frac{22}{7} \times (2 \times 10^{-2})^2 \]
Substitute into the force equation:
\[ F = 10^5 \times \frac{22}{7} \times (2 \times 10^{-2})^2 + 1.36 \times 10^4 \times 10 \times (30 \times 10^{-2}) \times \frac{22}{7} \times (2 \times 10^{-2})^2 \]
Solving this:
\[ F = 51.29 + 125.71 = 177 \, \text{N}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: