The force exerted by mercury on the bottom of the tube can be calculated as:
\[ F = P_0A + \rho_m ghA \]
where:
- \( P_0 = 10^5 \, \text{Nm}^{-2} \) (atmospheric pressure),
- \( A = \pi r^2 = \frac{22}{7} \times (2 \times 10^{-2})^2 \) (area of the base),
- \( \rho_m = 1.36 \times 10^4 \, \text{kg m}^{-3} \) (density of mercury),
- \( g = 10 \, \text{ms}^{-2} \),
- \( h = 30 \times 10^{-2} \, \text{m} \) (height of mercury column).
Calculating \( A \):
\[ A = \frac{22}{7} \times (2 \times 10^{-2})^2 \]
Substitute into the force equation:
\[ F = 10^5 \times \frac{22}{7} \times (2 \times 10^{-2})^2 + 1.36 \times 10^4 \times 10 \times (30 \times 10^{-2}) \times \frac{22}{7} \times (2 \times 10^{-2})^2 \]
Solving this:
\[ F = 51.29 + 125.71 = 177 \, \text{N}. \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.