Step 1: Find the lengths of the sides using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}. \] Side AB: \[ AB = \sqrt{(9 - 6)^2 + (2 - (-2))^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5. \] Side BC: \[ BC = \sqrt{(5 - 9)^2 + (-1 - 2)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = 5. \] Side CD: \[ CD = \sqrt{(2 - 5)^2 + (-5 - (-1))^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{9 + 16} = 5. \] Side DA: \[ DA = \sqrt{(6 - 2)^2 + (-2 - (-5))^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5. \] All sides are equal, so $ABCD$ is a rhombus. Step 2: Check diagonals to confirm it is not a square. Diagonal AC: \[ AC = \sqrt{(5 - 6)^2 + (-1 - (-2))^2} = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}. \] Diagonal BD: \[ BD = \sqrt{(2 - 9)^2 + (-5 - 2)^2} = \sqrt{(-7)^2 + (-7)^2} = \sqrt{49 + 49} = \sqrt{98} = 7\sqrt{2}. \] Since the diagonals are not equal ($AC \neq BD$), $ABCD$ is not a square. Correct Answer: $ABCD$ is a rhombus, but not a square.
Let \( F \) and \( F' \) be the foci of the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (where \( b<2 \)), and let \( B \) be one end of the minor axis. If the area of the triangle \( FBF' \) is \( \sqrt{3} \) sq. units, then the eccentricity of the ellipse is:
A common tangent to the circle \( x^2 + y^2 = 9 \) and the parabola \( y^2 = 8x \) is
If the equation of the circle passing through the points of intersection of the circles \[ x^2 - 2x + y^2 - 4y - 4 = 0, \quad x^2 + y^2 + 4y - 4 = 0 \] and the point \( (3,3) \) is given by \[ x^2 + y^2 + \alpha x + \beta y + \gamma = 0, \] then \( 3(\alpha + \beta + \gamma) \) is:
If the circles \( x^2 + y^2 - 8x - 8y + 28 = 0 \) and \( x^2 + y^2 - 8x - 6y + 25 - a^2 = 0 \) have only one common tangent, then \( a \) is: