For an application where the Reynolds number is to be kept constant, a liquid with a density of 1 g cm\(^-3\) and viscosity of 0.01 Poise results in a characteristic speed of 1 cm s\(^-1\). If this liquid is replaced by another with a density of 1.25 g cm\(^-3\) and viscosity of 0.015 Poise, the characteristic velocity will be ......... cm s\(^-1\) (rounded off to one decimal place).
Consider a fully developed, steady, one-dimensional, laminar flow of a Newtonian liquid through a pipe. The maximum velocity in the pipe is proportional to which of the following quantities?
Given: \( \Delta P \) is the difference between the outlet and inlet pressure, \( \mu \) is the dynamic viscosity of the liquid, and \( R \) and \( L \) are the radius and length of the pipe, respectively.
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly:
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
Viscosity is a measure of a fluid’s resistance to flow. The SI unit of viscosity is poiseiulle (PI). Its other units are newton-second per square metre (N s m-2) or pascal-second (Pa s.) The dimensional formula of viscosity is [ML-1T-1].
Viscosity is measured in terms of a ratio of shearing stress to the velocity gradient in a fluid. If a sphere is dropped into a fluid, the viscosity can be determined using the following formula:
η = [2ga2(Δρ)] / 9v
Where ∆ρ is the density difference between fluid and sphere tested, a is the radius of the sphere, g is the acceleration due to gravity and v is the velocity of the sphere.